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ABSTRACT 

A linearized analysis of a finite width rectangular step thrust bearing 

was performed. Dimensionless load capacity and stiffness are expressed 

in terms of a Fourier cosine series. The dimensionless load capacity and 

stiffness were found to  be a function of the dimensionless bearing number 

A, the pad length-to-width ratio h, the film thickness ratio k, the step 

location parameter q, and the feed groove parameter q. 

03 * 
W 
9 w 

The equations obtained in the analysis were verified. The assump- 

tions imposed were substantiated by comparison of the results with an 

existing exact solution for the infinite width bearing. A digital computer 

program was developed which determines optimal bearing configuration 

for maximum load capacity or stiffness. Simple design curves are pre- 

sented. Results are shown for both compressible and incompressible 

lubrication. Through a parameter transformation the results are directly 

usable in designing optimal step sector thrust bearings. 

SYMBOLS 

A9 B, D, E integration constants 

AA, BB, CC, DD, EE constants defined in body of report 

TM X-52815 
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width of rectangular thrust bearing 

film thickness in the ridge region 

film thickness 

Fourier coeff icient 

separation constant 

dimensionless stiffness, - C(aW/aC) 

film thickness ratio, (C + A)/C 

length of pad region 

last odd positive integer used in evaluation of Fourier cosine series 

odd positive integers 

number of pads placed in the overall length 

dimensionless pressure, (p - pa) /pa 

pressure 

ambient pressure 

mass flow rate 

inner radius of a sector thrust bearing 

outer radius of a sector thrust bearing 

velocity of bearing surface 

dimensionless load capacity of finite width bearing, w/[pab( Ir + Is + Zg)] 

load capacity 

dimensionless width coordinate, x/b 

coordinate in direction of motion 

dimensionless width coordinate, y/b 

coordinate in the direction of the width of the bearing 
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P dimensionless bearing number used by Kocki (ref. I), 
3pu(zs + - A 

- P =  
pa A2 (k - 1)2 

A depth of step 

q feed groove parameter, ‘r + I s  
zr + Is + I g 

2 A dimensionless bearing number, 6 pUb/pa C 

ratio of length-to-width of pad, ( I r  + Is + I )/b g 
p viscosity of fluid 

p mass density of lubricant 
IS 

Ir + Is + I 
step location parameter, 

g 

w angular velocity 

Subscripts: 

g denotes feed groove region 

r denotes ridge region 

s denotes step region 
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INTRODUCTION 

One of the first to apply the step film to a gas-lubricated bearing 

was Kochi (ref. 1). For the infinitely wide single thrust bearing Kochi 

obtained an exact numerical solution. The expressions for the pres- 

sure were found to be contained in a set of transcendental equations. 

Graphical methods were used to obtain the results. 

Tn practical applications one must use finite width bearings. The 

finite width step thrust bearing can appear in the shape of a rectangular 

pad or as a sector. For both the rectangular and the sector step thrust 

bearings there is a definite need to know the optimal step configura- 

tions for maximum load capacity or maximum stiffness. 

Ausman (ref. 2) in 1961 analyzed the gas lubricated step sector 

thrust bearing. He applied linearization assumptions to  the Reynolds 

equation thereby enabling the pressure to be determined. Knowing the 

pressure, the load capacity was obtained. The expression for the load 

capacity appeared in terms of eigenvalues and Bessel functions. 

Ausman's results do not lend themselves readily to obtaining optimal 

step configurations for maximum load capacity or maximum stiffness 

when various bearing operating conditions are considered. The reason 

for  this is the way in which parameters were made dimensionless and 

the nature of the resulting equations. 

In this paper a rectangular step thrust bearing is analyzed. Line- 

arization assumptions comparable to those imposed by Ausman (ref. 2) 

a re  used. The sector bearing results are\obtained directly from the 

rectangular step bearing results since curvature effects are shown to 

be very small. Because of the simplified nature of the resulting equa- 
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tions a computer program was developed which optimized step param- 

eters for maximum load capacity or maximum stiffness for a wide 

range of bearing operating conditions. Results are shown for both 

compressible and incompressible lubrication. Therefore, the objec- 

tive of this paper is to present easily usable design information for 

finding optimal step bearings of rectangular or sector shape bearings. 

The results a r e  to  be valid for a wide range of operating conditions. 

BEARING DESCRIPTION 

Sketch 1 shows the bearing to be studied. In this sketch the ridge 

region is where the film thickness is C and the step region is where 

the film thickness if C + A. The feed groove is the deep groove sepa- 

rating the end of the ridge region and the beginning of the next step 

region. Although not shown in this figure, the depth of the feed groove 

is orders of magnitude deeper than the film thickness C. A t7pad’’ is 

defined as the section which includes a ridge, step, and feed groove 

regions. The length of the feed groove is small relative to the length 

of the pad. It should be noted that each pad acts independently since 

the pressure profile is broken at the lubrication feed groove. 

LINEARIZATION ASSUMPTIONS 

The Reynolds equation for the steady state isothermal gas- 

lubricated thrust bearing can be written as 

Expanding and rearranging terms, the above equation becomes 
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In order to get an analytic solution to the above equation lineariza- 

tion assumptions will be imposed. The first linearization assumption 

states that the right side of equation (2) is zero. A secopd and final 

linearization assumption which is required is that p, where it appears 

as a coefficient, be replaced by the ambient pressure, pa. Applying 

these assumptions, equation (2) becomes 

ax2 ay2 pah2 ax 

PRESSURE ANALYSIS 

From equation (3) we can write the linearized Reynolds equation 

separately for the ridge and step regions of the finite step thrust bear- 

ing as: 
2 2 

a pr a p r  - 6 p U  apr -+-- _c_ 

ax2 ay2 pac2 ax 

6pU a p ~  - a2ps +-- a2Ps - 
2 ax ax ay2 p,(c + A) 

Subscript r refers  to the ridge region (see sketch I),  subscript s re- 

fers to  the step region, and subscript g refers to  the feed groove re- 

gion. Letting x = bX, y = by, p, = pa(P, + l), and p, = pa(Ps + 1) the 

above equations become 

(4) ax2 ay2 ax 
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where 

and 

ax2 ay2 k2 ax 

A = A  6 Ub 

Using a separation of variables technique on equations (4) and (5) 

gives the following 

Ps=e  + Bse 

The boundary conditions are 

(1) P, = 0 when X = 0 

(2) Pr = 0 when X = 
b 

b 
(3 )P  = P  = r S 

m=l, 3 , .  . . 

+ E8 cos (Js Y) 3 
(7) 

where Im is a Fourier coefficient 
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(4) - r -  - - - 0  - when Y = O  

(5) Pr = Ps = 0 when Y = 1/2 

(6) Qr = QS when X = \c/A 

Making use of boundary conditions 1 through 5, equations (6) and 

(5') become 

00 

Ips= 

m=l,  3 , .  . . 

I, cos(rn.rrY)e 2k2 

+Ats  * A t s  
e - e  

J (9) 

where 

and 

The linearized equations describing the mass flow across the ridge 

and step regions can be written as 



9 

These equations may be made dimensionless by letting p, = pa(Pr + l), 

= p (P + 1) and x = bX as was done for the Reynolds equations. Ps a s 

3 
Papa(@ + A) 

Qs = 
12 pb 

- 
apS (Ps + 1) - - ax 

Making use of boundary conditions 3 and 6 gives the follawing 

Im cos(mnY) 

k 3 ( z )  X=Mp X=XJ/ 1 - (2) = A(k -1)  

(10) 

Making use of equatiops (8), (9), anq (10) the Fourier coefficient Im 

can be solved 
I 

The dimensionless load capacity for the ridge and step region can 

be written as 
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Substituting equations (8) and (9) into the above equations and integrating 

gives the following 
00 

wr = 

m=l,  3 , .  . . 

03 

2 1 ~  sin(?) 

3 3  m r A  

h L J 
2 

. 

ES 
+- 

m=l,  3 , .  . . 

(12) - 

1 - 2e 

1 - e  

The total dimensionless load supported by the rectangular step slider 

bearing can be written as 

w + w s  

P&b 
W =  r = wr + ws 

STIFFNESS ANALYSTS 

The equation for the dimensionless stiffness can be written as 

Making use of equations (12), (13), and (14), the above equation becomes 
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00 

K =  
2 1 ~  sin(?) 

3 3  m r h  
W(AA) - 

m=l, 3 , .  . , 

where AA, BB, CC, DD, and EE are constants defined in the Appendix. 

Therefore, with equations (11) through (15) the dimensionless load 

capacity and stiffness for a self-acting gas-lubricated finite width step 

thrust bearing is completely defined. From these equations it is evi- 

dent that the dimensionless load capacity and stiffness are functions of 

the following five parameters: 
2 (1) A = 6pUb/paC , the dimensionless bearing number 

(2) h = 
Is + Ir + I 

9 the length-to-width ratio of a-pad 
b 

(3) k = + * 9 film thickness ratio 
C 

9 step location parameter % 
Is + Ir + I 

(4) + = 

g 

(5) 77 = Is + " , feed groove parameter 
Is + Ir + I g 

VERIFICATION OF EQUATIONS 

The equations for the dimensionless load capacity and stiffness were 

programmed on a digital computer. It should be recalled that lineariza- 

tion assumptions were imposed in order to obtain simplified results. 

Figure 1 shows that these assumptions are generally valid for the infinite 
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width bearing or a finite analysis where X - 0. This figure compares 

the results from the present work with Kochi's (ref. 1) exact solution. 

The agreement is good. Comparing equations (2) and (3) with and with- 

out the width coordinates (y), one could further conclude that for any 

finite width bearing the linearized analysis should be in good agreement 

with the exact results. 

Table I shows that the solutions for the finite and infinite analyses 

approach each other when the length-to-width, ratio approaches zero. 

The infinite width solvtion was obtained from reference 3. The results 

when five hundred terms (M = 1001) are used in the Fourier cosine 

series approach the infinite width analysis much closer than when only 

fifty terms (M = 101) are used. ]Furthermore, the rate of convergence 

is much slower at large dimensionless bearing numbers (A + 500) than 

at smaller values of A. Note the decrease in dimensionless load ca- 

pacity (W) when goirrg from A = 100 to A = 500. ThiS is due to the 

fact that the step parameters are held conetant. That is, the step pa- 

rameters chosen happen to be closer to the optimal for A ;s 100 than 

for A = 500. 

Table IT compares the dimensionless load capacity obtained from 

Ausman (ref. 2) with the present work for various dimensionless bear- 

ing numbers (A) and inner to  outer radius ratios Ri/Ro. Ausman 

(ref. 2) considers curvature effects whereas the present work daw not. 

The equivalent length of a sector pad is assumed to be the arc length 

along the average radius. The width is the difference in inner and outer 

radii. For all inner to  outer radius ratios, there is close agreement 

between the two analyses. Curvature effects are small. Therefore, 
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the simplified equations of the present analysis are valid for evaluating 

the circular sector thrust bearing. 

OP TIMIZ ING PROCEDURE 

The problem as defined in the introduction is to find the optimal 

step bearing for maximum load capacity or stiffness for various bearing 

numbers. This means, given the dimensionless bearing number A, 

finding the optimal length-to-width ratio A, optimal film thickness ra- 

tio k, and optimal step location parameter +. The significance of the 

feed groove parameter q is much less than that of the other param- 

eters. Therefore, for all evaluations the feed groove parameter q will 

be set equal to 0.97. 

The basic problem in optimizing X, k, and I/' for maximum load 

and stiffness is essentially that of finding values of X, k, and + which 

satisfy the following equations: 

The method used in solving the above equations is the Newton-Raphson 

method for solving simultaneous equations. This method is described in 

Scarborough (ref. 4) or most other texts on numerical analysis. 

Therefore, given the dimensionless bearing number A, the optimiza- 

tion computer program obtains optimum values of X, k, and \c/ for max- 

imum dimensionless load capacity or  stiffness. As a check on the opti- 

mization procedure the following case was considered A = X = M O - ~ .  

This case approaches an infinitely wide incompressibility lubricated step 
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bearing for  which the results are known. For this case the computer 

program indicated that k = 1.866 and $’ = 0,718 were optimal for rnax- 

imum load capacity. These results are in exact agreement with 

Archibald (ref. 5). 

STEP SECTOR THRUST BEARING 

For optimization of a step sector thrust bearing, parameters for 

the sector must be faund that are analogous to those for the rectangular 

step bearing. The following substitutions accomplish this trawforma- 

tion. 

b - Ro - Ri 

N(Zs + Ir + I  ) - “(Ro + Ri) 
g 

U +-(Ro w + Ri) 
2 

Where N is the number of pads placed in the step sector. Making use 

of the above equations, the dimensionless bearing number can be re- 

written as 

The optimal number of pads to  be placed in the sector is obtained from 

the following formula: 

Tn the above equation (A) 

ratio. The way (A) 

is the optimal value for the length-to-width 

is obtained will be discussed in the next section. 
opt 

opt 
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Since N will not be an integer normally, rounding it to the nearest inte- 

ger is required. 

DISCUSSION OF RESULTS 

Tables 111 and IV give optimal step parameters (q, X, and k) for re- 

sulting maximum load capacity and stiffness. The differences between 

these tables are: Table TIT optimizes with respect to load capacity, where- 

as table IV optimizes with respect to stiffness. The following observations 

can be made about both tables TIT and IV as A (or bearing speed) is in- 

creased: 

(1) The length-to-width ratio (A) increases. That is, the length of the 

pad increases relative to its width. 

(2) The step location parameter (q) decreases. This means that the 

length of the step region decreases relative to the length of the pad. 

(3) The film thickness ratio (k) increases. That is, the step depth 

increases relative to the clearance. 

Figures 2, 3, 4(a) and 4(b) are obtained directly from the data pre- 

sented in tables ITI and TV. Figure 2 shows the effect of A on A, k, and 

@ for maximum load capacity condition for a range of A from 0 to  410. 

The optimal step parameters (A, k, and q) are  seen to approach an asymp- 

tote as the dimensionless bearing number (A) becomes small. That is, for 

small A(A < - 0. l), the optimal step parameters a re  not a function of A. 

In the incompressible solution of a step bearing the right hand side of equa- 

tions (4) and (5) a re  zero. Therefore, it must be concluded that the asymp- 

totic values which the step parameters approach in figure 2 correspond to 

the incompressible solution. These asymptotes are X = 0.918, $' = 0.555, 

and k = 1.693. 



Figure 3 shows the effect of A on X, k, and $ for maximum stiff- 

ness condition for a range of A from 0 to 410. As in figure 2 the opti- 

mal step parameters are seen to approach asymptotes as the incompres- 

sible solution is reached. The asymptotes are X = 0.915, $ = 0.557, and 

k = 1.470. Note that there is a difference in the asymptote for the film 

thickness ratio but virtually no change in X and $ when compared to 

that obtained from figure 2. 

Figure 4(a) and 4(b) show the effect of dimensionless bearing number 

(A) on dimensionless load capacity and stiffness. The difference in these 

figures is that the optimal step parameters are obtained in figure 4(a) for 

maximum load capacity and in figure 4(b) for maximum stiffness. ALSO 

shown in these figures are values of K and W when the step parameters 

are held fixed as the optimal values obtained for the incompressible solu- 

tion. The significant decrease between the solid and dash lines in W or 

K does not occur until A > 8. 

Figures 3, 3, 4(a), and 4(b) contain all the necessary information 

for the design of an optimal rectangular step thrust bearing for maximum 

load capacity or stiffness. With the dimensionless bearing number A 

given the optimal values of X, J/, and k can be obtained from figures 2 

or 3, depending if maximum load or  stiffness is major consideration. 

From figures 4(a) or 4(b) the resulting values for the dimensionless load 

and stiffness can be obtained. Furthermore from figures 2, 3, 4(a), and 

4(b) and equations (18) and (19), the optimal step sector thrust bearing 

considering load capacity or stiffness can be obtained. The dimension- 

less bearing number (A) is obtained from equation (18). Knowing A the 

optimal values of X, J / ?  and k can be obtained from figures 2 or 3 de- 
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pending whether maximum load or  stiffness is a major consideration. 

From equation (19) the optimal number of pads placed in a sector can 

be determined. Finally, from figures 4(a) or 4(b) the resulting values 

for the dimensionless load capacity and stiffness can be obtained. 

CONCLUSION 

A linearized analysis of a rectangular step thrust bearing was per- 

formed. Dimensionless load capacity and stiffness are expressed in 

te rms  of a Fourier cosine series. The equations obtained in the analy- 

sis were verified. The assumptions imposed were substantiated by 

comparison of the results with an existing exact solution for the infinite 

width bearing. A digital computer program was developed which deter- 

mines optimal bearing configuration for maximum load capacity or 

stiffness. Simple design curves are presented. Results are shown for  

both compressible and incompressible lubrication. Through a param- 

eter transformation the results are directly usable in designing an upti- 

mal step sector thrust bearing. 
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APPENDIX - CONSTANTS OBTAINE IN EVAEUATTNG 

DIMENSIONLESS STIFFNESS 

J 
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1 - 2e EE = 
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TABLE I. - COMPARISON OF DIMENSIONLESS LOAD CAPACITY FOR INFINITE-WIDTH SOLUTION AND LIMITING CASE O F  

FEiiTE-WIDTH SOLUTION FOR TWO-SERIES TRUNCATIONS 

Feed groove parameter, TJ = 1.0; step location parameter, J, = 0.45; film thickness ratio, k = 2.0.1 

Dimensionless 
searing number, 

A 

Dimensionless l o a  
capacity of infinite 

width bearing, 

w m  

10-2 
10-1 

1 
10 

100 
500 

Xmensionless 
stiffness of 

infinite-width 
bearing, 

2. 5516X10-6 
2 . 5 5 1 7 ~ 1 0 - ~  
2 . 5 5 3 3 ~ 1 0 - ~  
2 . 5 6 8 1 ~ 1 0 - ~  

2.7185X10-2 
3.2354X10-1 
5.1998X10-1 
5. 5600X10-1 

Limiting case of dimensionless stiffness 
of infinite-width bearing, 

lim K 
X - 0  

VI = 101 (50 terms) 

2.5414XlO" 
2 . 5 4 1 6 ~ 1 0 - ~  
2 . 5 4 3 1 ~ 1 0 - ~  
2 . 5 5 8 5 ~ 1 0 - ~  

2.7011x10-2 
3. 2226X10-1 
5. ?116X10-1 
5.4961X10-1 

M = 1001 (500 term 

2. 5505X10-6 
2 . 5 5 0 ? ~ 1 0 - ~  
2 . 5 5 2 2 ~ 1 0 - ~  
2 . 5 6 1 1 ~ 1 0 - ~  

2.1114X10-2 
3. 2341X10-1 
5. 7923x10-1 
5. 5165x10-1 

TABLE ll. - COMPARISON O F  DIMENSIONLESS LOAD CAPACITY 

OF AUSMAN (REF. 2) WITH PRESENT ANALYSIS 

Inner- to 
outer- 
radius 

Dimensionless bearing number, A 

0.029 0.063 0.141 0.284 0.466 1 ::: I .029 1 .063 I .140 1 .284 I :'ill 1 
0.019 0.041 0.091 0.195 0.363 

aFi rs t  value from ref. 2; second value from present analysis. 

.019 .041 ,091 .196 

VI= 1001. (500 terms 

4.1808x10-6 
4.1814x10-~ 
4.1870xlo-~ 
4 . 2 4 3 1 ~ 1 0 - ~  

4. 1849X10-2 
5. 8416X10-1 
5. 6091x10-1 
5. 6141X10-1 



TABLE ID. - OPTIMAL STEP PARAMETERS FOR RESULTING MAXIMUM DIMENSIONLESS LOAD 

CAPACITY FOR VARIOUS DIMENSIONLESS BEARING NUMBERS 

[Resulting dimensionless stiffness also given when optimum step parameters are used.] 

a) 
d co 
m 
I w 

Dimensionless 
earing number 

A 

2.5X10-' 
5.0X10-2 

0.1 

.2 

. 4  

. 8  

1.6 

3.2 
6.4 

12.8 
25.6 

51.2 
102.4 
204.8 
409.6 

3ptimal value 
:or length-to- 

width ratio 
of P a ,  

@)opt 

0.918 
.919 
.920 
,922 

,925 
,933 
,948 
.980 

1.043 
1.145 
1.294 
1.575 

2.037 
2.710 
3.642 
4.901 

Optimal value 
f step location 
parameter, 

(*)opt 

0.555 
.554 
.553 
.552 

.549 

.544 
,533 
.511 

.471 

.412 

.344 

.271 

.204 

.151 

. 110 

.080 

g t ima l  value 
of film 

thickness 
ratio, 

@)opt 

1.693 
1.693 
1.693 
1.693 

1.693 
1.694 
1.696 
1.703 

1.723 
1.790 
1.949 
2.240 

2.698 
3.359 
4.270 
5.501 

Maximum value of 
limensionless loac 
capacity of finite- 

width bearing, 

( q m a x  

i . 1 8 1 ~ 1 0 - ~  
2 . 9 5 5 ~ 1 0 - ~  
5 . 9 1 4 ~ 1 0 - ~  
1 . 1 8 4 ~ 1 0 - ~  

2 . 3 7 6 ~ 1 0 - ~  
4 . 7 7 9 ~ 1 0 - ~  
9 . 6 7 0 ~ 1 0 - ~  
1.98Ox10-2 

4.144X10-' 
8. 903X10-2 
1. 878X10-1 
3. 651x10-1 

6. 492x10-1 
1.072 
1.674 
2.502 

Hmensionless 
stiffness, 

K 

2 . 3 6 2 ~ 1 0 - ~  
5 . 9 1 3 ~ 1 0 - ~  
1 . 1 8 4 ~ 1 0 - ~  
2 . 3 7 6 ~ 1 0 - ~  

4 . 7 7 9 ~ 1 0 ' ~  
9 . 6 6 9 ~ 1 0 - ~  
1. 979X10-2 
4.145X10-2 

9. 006X10-2 
1. 974x10-1 
3. 854x10-1 
6. 514x10-1 

1.003 
1.456 
2.034 
2.770 

TABLE N. - OPTIMAL STEP PARAMETERS FOR RESULTING MAXIMUM DIMENSIONLESS 

STIFFNESS FOR VARIOUS DIMENSIONLESS BEARING NUMBERS 

[Resulting dimensionless load capacity also given when optimal step parameters a re  used.] 

Dimensionless 
Nearing number 

A 

2.5X10-' 
5. OX10'2 

0.1 
. 2  
. 4  

. 8  
1.6 
3.2 

6.4 
12.8 
25.8 

51.2 
102.4 
204.8 

g t ima l  value 
or length-to- 
width ratio 

of Pad, 

@)opt 

0.915 
,917 
.919 

.922 

.929 

.943 

.973 
1.035 
1.153 

1.353 
1.863 
2.952 

5.035 
9.093 

17.172 

Optimal value 
if step location 

parameter, 

(*)opt 

0.557 
.555 
.554 

.551 

.546 

.535 

,514 
.474 
.408 

.328 

.232 

.148 

.088 

.051 

.030 

mtimal valuf 
of film 

thickness 
ratio, 

(k)opt 

1.470 
1.471 
1.471 

1.471 
1.472 
1.474 

1.479 
1.494 
1.537 

1.642 
1.849 
2.191 

2.687 
3.368 
4.274 

ilaximum value o 
dimensionless 

stiffness, 

(%ax 

2 .550~10 '~  

1 . 2 7 8 ~ 1 0 - ~  

2 . 5 6 3 ~ 1 0 - ~  
5 . 1 5 2 ~ 1 0 - ~  

6. 334X10-4 

1. 041X10-2 

2. 125X10-2 
4.432X10-' 
9. 561X10-2 

2. 072X10-1 
4. 070X10'1 
7. 036x10-1 

1.105 
1.627 
2.293 

Nmensionless loac 
capacity of finite- 

width bearing, 
W 

1 . 1 1 5 ~ 1 0 - ~  
2 . 7 8 9 ~ 1 0 - ~  
5 . 5 8 2 ~ 1 0 - ~  

i . 1 1 8 ~ 1 0 - ~  
2 . 2 4 5 ~ 1 0 - ~  
4 . 5 2 0 ~ 1 0 - ~  

9.164x10-~ 
1.882x10-2 
3.953X10-' 

8.518X10-' 
1.757X10-1 
3. 289x10-1 

5. 624X10-1 
8. 931x10-1 
1,338 
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----- Kochi's solution (ref. 1) 
Present solution 

Kochi's f i lm 
thickness ratio, 

S 

. 3  + p - m  

(for both 
solutions) 

I 
I y I I I &-- 

1.0 + p - m  

(for both 
solutions) 

I 
I 

I 

I i 

Figure 1. - Comparison of present linearized results with Kochi's exact 
results for infinite-width step slider bearing when step location param- 
eter i s  0.5. 



R 

d 
E 
3 t 
7 

B a2 - 
'FI c m 

J 
0- 

E 

5 .- 
In 
v) a, 
C 

a= c 
- E 
E 

9 

6- 

5 -  

4 -  

3 -  

2 -  

1- 

0- 

i 

E 
3 
E 

'FI 

E 
J 
0- 
I 

E 

Dimensionless bearing number, A = 6pUb/paC2 

Figure 2 - Effect of dimensionless bearing number on optimum parameters for maximum dimensionless load. 
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Figure 3. - Effect of dimensionless bearing number on optimal step parameters for maximum dimensionless 
stiffness. 
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